
Iris Recognition for Continuous Biometric User
Authentication

Author: Justin Weaver
Date: May 30th, 2011

Mentor: Kenrick Mock
UAA – Computer Science Department

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 1 of 13

Table of Contents
Abstract...2
1. Introduction..2
2. Overview..3

2.1 Remote Eye Trackers for Iris Recognition.3
3. Requirements..4

3.1 Base Requirements.....................................4
3.2 Software Requirements5

3.2.1 Software Behavior Specifications......5
3.3 Other Requirements...................................5

3.3.1 Demonstration Requirements.............5
4. Methodology...6

4.1 Iris Matching Steps....................................6
4.1.1 Step One: Iris Image Extraction.........6

4.1.2 Step Two: Iris Image Normalization. .7
4.1.3 Step Three: Hash Generation.............8
4.1.4 Step Four: Hash Matching.................8

5. Results..8
5.1 Deviations from Planned Software
Behavior...8
5.2 Inherited Code, Hash Generation, and
Angle Invariance..9
5.3 Revising an Idea from the Proposal.........10
5.4 Future Work...10

6. Summary...11
7. References and Supporting Literature............11

7.1 Other Resources.......................................12

Note that all the images captured from the eye tracker in this document are for illustration purposes
only. Consequently, they have each had their iris patterns smeared and scrambled to eliminate the

possibility of any future security concerns.

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 2 of 13

Abstract
Identity management is increasingly important in today's technology-oriented world. Unfortunately,
modern security techniques are far from flawless, and infallible identity management remains the
“holy grail” of computer security. The aim of this project was to strengthen and enhance computer
security by developing a proof-of-concept computer system to silently, unobtrusively, and
continuously verify the identity of the current operator using biometric authentication in the form of
iris recognition. The main novelty in the project is the design of the software, which periodically re-
checks the identity of the current user. In the end, the system that was developed provides adequate
proof-of-concept to legitimize further efforts in this area. However, the criteria for success laid out
in the initial proposal was not completely achieved.

1. Introduction
Security, in general, is of critical concern to both private businesses and government operations
alike.[R1] Stubbornly, as the information age charges forward, perfect identity management remains
an intractable problem. For example, a key can be lost or stolen, and a password can be forgotten or
compromised. Other singular methods of authentication suffer from similar weaknesses. At present,
no single form of identification seems sufficient to unequivocally confirm the identity of a legitimate
user; the next logical step is multimodal security.

Multimodal security employs more than one method of authentication to identify a user. For
example, a multimodal system could require both a key and a password. However, such a system is
still vulnerable, if both key and password are individually circumvented. Luckily, passwords and
keys are not the only tools that security systems can employ to recognize people. Biometric
authentication is ideal for use in a multimodal system.

Ideally, a computer system would automatically and reliably recognize the user, without requiring
their cooperation, much the same way another human being would. Loosely stated, biometric
authentication is the idea that a machine can use input devices to measure a person's physical
characteristics and/or behaviors to accurately identify them.[R2] The data that a biometric
authentication system uses to identify a user is difficult to lose, copy, fake, or steal.

Most modern authentication systems also demonstrate an additional weakness one could refer to as
the “gatekeeper” problem: once a user has been authenticated, they are assumed legitimate for the
remainder of their interaction with the system. Unfortunately, such a model promises smooth sailing
to any attacker, once they are past the initial login. It also leaves the system in a state vulnerable to a
user switch. The most brutish solution would be to simply prompt the user to re-authenticate
periodically. However, this is less than ideal, since it would pester the user with unwelcome and
inconvenient interruptions.

However, using biometric recognition, a system could periodically (continuously) re-verify the
user’s identity in a passive manner. Passive, meaning that the system would not require the user’s
cooperation, or even their awareness, to authenticate them. The notion of continuous authentication
can be employed to significantly reinforce existing security techniques.[R3][R4][R5] If the operator is not
the person the system expects them to be, or if the operator disappears, the machine can take action
(e.g., lock itself, send a notification, or trigger an alarm).

Iris recognition is an ideal biometric, because it can be implemented in a passive way, and it is

(top)

(top)

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 3 of 13

incredibly accurate.

Because iris patterns are remarkably unique,[Illustration 1] the techniques
of Dr. John Daugman[B1] allow stored iris images to be matched with
astonishing accuracy against the images from a live high resolution
video camera.[R6]

A study of Dr. John Daugman’s algorithms successfully completed
200 billion cross-comparisons without a single false match.[R7] The
database for the study came from the United Arab Emirates (UAE),
where they have been using Daugman’s iris recognition algorithms
to identify people crossing their border since 2001. The database
contained 632,500 unique samples, and spanned 152 nationalities.

Iris recognition is better suited to continuous biometric authentication than other methods, not only
because of its accuracy, but because the required equipment is unobtrusive, and the data used for
identification of the user is constantly available. Methods like keystroke analysis, for example, can
be employed to match the current user's typing pattern to a stored profile, but such techniques are
only marginally accurate at best; additionally, the use of a computer doesn't necessitate the constant
use of a keyboard, so the data required to identify the current user is not always available; which is a
requirement for passive recognition.[R8][R9] Fingerprint recognition, likewise, suffers from the same
defect, because it requires that the user's hand be in nearly constant contact with a measurement
device. However, passive iris recognition holds an advantage: when using the terminal, the user will
undoubtedly spend most of their time looking at the screen. So, the system is designed to expect
many failed matches (note: not mismatches), but requires at least one good match per arbitrary time
period.

In summary, a strong multimodal system could require an initial password and then proceed with
continuous iris recognition using a remote eye tracker. Such a system could be extremely useful for
highly sensitive workstations.

2. Overview
The goal of this project was to develop a proof-of-concept system that periodically, passively
verifies the user’s identity using a remote eye tracker, the established iris matching algorithms of Dr.
John Daugman, and the prior work of Dr. Kenrick Mock[B2] and Dr. Bogdan Hoanca.

2.1 Remote Eye Trackers for Iris Recognition
Normally, eye trackers are used as assistive technology, i.e.,
to facilitate computer access for the disabled. However, the
specifications of these devices often make them appropriate
for iris recognition.

A remote eye tracker, like EyeTech’s TM3, (as opposed to an
intrusive head-mounted one) is essentially just a high
resolution near-infrared (700-900nm wavelength) light video camera situated between a pair of near-
infrared spotlights.[R10][Illustration 2]

(top)

(top)

Illustration 1: Patterns in the Human
Iris. Picture taken by Sarah
Cartwright, 2007.

Illustration 2: An EyeTech TM3 eye tracker.
Picture from the EyeTech website.

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 4 of 13

The eye tracker is placed in front of the user in an unobtrusive manner,
usually just below the computer monitor.[Illustration 3] The near-infrared light
is completely invisible to the human eye, but the eye tracker's special
camera is able to see it clearly. In near infrared lighting conditions, rich
patterns are visible in the iris.[R11]

Once activated, the eye tracker switches its spotlights on, which cause a
pair of “glint” points to appear in the video image of the user's eyes.
[Illustration 4] The eye tracker then uses those glint points to orient itself and
determine where the user is looking at any given time.

Through its driver software, the eye
tracker provides a raw image of the
user’s face,[Illustration 5] the coordinates of
the user’s pupils, and the previously mentioned glint-points. This
means that sample images need only be examined when the eye
tracker finds an eye. It also means we can effortlessly minimize the
area of interest within the image to a very small region immediately
around the provided pupil coordinates. Furthermore, a certain
degree of image focus is guaranteed by the mere fact that the eye

tracker was able to locate the user’s eye.

The fact that the camera is sensitive only to the near-
infrared spectrum light helps to reduce the potential for
lighting variations. Commonly used incandescent light
bulbs, do not produce light in the near-infrared
spectrum. Additionally, florescent bulbs produce it only
in marginal quantities. Thus, without its spotlights, the
eye tracker’s camera would often see only blackness.
The most noteworthy exception to the rule is Sunlight, which does, in fact, contain intense quantities
of the spectrum in question, and thus should be kept to a minimum. Even if the lighting variation
does not effect the actual matching, it may preclude it by causing the eye tracker to fail when it
attempts to find the glint points in the user’s eyes.

To summarize, the EyeTech TM3 eye tracker's high resolution near-infrared camera, two near-
infrared spectrum spotlights, and unobtrusive nature, make it ideal for the purpose of passive iris
recognition. Additionally, the eye tracker provides some data that makes the process of recognizing
eye features easier.

3. Requirements

3.1 Base Requirements
• An EyeTech TM3 eye tracker.
• A personal computer with at least these minimum requirements: Pentium 800Mhz, 1

available IEEE 1394 port, 128MB RAM, 50MB free disk space, Windows XP or Vista.
[R12]

(top)

(top)

Illustration 4: The glint points in the
user's eyes from the infrared
spotlights as seen by the eye
tracker's camera.

Illustration 5: A raw image returned from the eye
tracker.

Illustration 3: EyeTech TM3 eye
tracker mounted on LCD monitor.
Picture from the EyeTech website.

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 5 of 13

3.2 Software Requirements
1. The software must run on the Microsoft .NET framework.[B3]

◦ Working with Dr. Kenrick Mock, I have previously developed a software wrapper that
provides a way to control EyeTech's line of eye trackers from within the .NET
environment. I named the wrapper QuickLinkDotNet, and released it under an open
source license.[B4] So, this project continues and extends that work.

2. The software should use the iris matching algorithms of Dr. John Daugman.

3. The software cannot place an obnoxiously heavy burden on the system as a result of the
periodic iris checks, i.e., the system's user interface will not become noticeably slower or
cumbersome to operate.

3.2.1 Software Behavior Specifications
The software runs in a normal Windows user session. It displays a small, draggable readout
window, and then begins to silently monitor input from the eye tracker. Periodically, the
program checks for the presence of a user sitting in front of the computer. When a user is
detected, the readout displays the identity of that user, if that user's profile is stored on the
system; otherwise, it reports that the current user is unknown. The known users consist of a
small database containing samples from the student researcher and his mentors.

By accessing the eye tracker's API through the wrapper, the program uses the location of the
user's eyes within the raw image to easily locate their eyes. The software then proceeds to
extract and compare the user's irises against each user profile stored in the database, one at a
time.

3.3 Other Requirements
The system must be minimally intrusive to the user, i.e., the user does not have to wear any
special equipment, sit in an uncomfortable position, nor behave in an overly awkward manner to
use the system.

3.3.1 Demonstration Requirements
The success of the project was originally specified by the reproducible demonstration of the
steps listed below.[B5] The planned demonstration involved running the project's software in
the background of a normal Windows session.

3.3.1.1 Demonstration Steps
These steps require the participation of three people: two “known” users, and one
“unknown” user. In practice, the three users will most likely consist of the student
researcher and the project mentors.

(top)

(top)

(top)

(top)

(top)

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 6 of 13

1. Begin with student researcher sitting in front of computer. The system is accurately
and continuously identifying the student researcher.

2. The student researcher looks away for 1-4 seconds, after which he looks at the
monitor again. The system continues to recognize the student researcher even
though he looked away, because the system allows a grace period. If he looks away
for more than 5 seconds, then the system reports that there is no user. Throughout
the subsequent steps, the 5 second grace period is always implied.

3. The student researcher stands up. The system accurately recognizes there is no
current user.

4. The known user sits down. The system accurately identifies the known user.
5. The known user stands up. The system accurately recognizes there is no current

user.
6. The unknown user sits down. The system detects and reports the unknown user.
7. The unknown user stands up. The system accurately recognizes there is no current

user.
8. The student researcher sits down. The system accurately identifies the student

researcher again.

4. Methodology
Note that, for added speed and simplicity, I decided to perform matching on only the user’s right
eye. Additionally, for this proof-of-concept system, no attempt was made at even the most
rudimentary database optimization. The project focused on a very small set of samples, so database
optimization was not a high priority. Instead, a simple linear search was used.

4.1 Iris Matching Steps
1. Find and extract the pixels that make up the portion of the iris we are interested in; this

includes constructing a mask to hide noise, i.e., anything that obscures or compromises
part of area of interest within the iris.

2. Normalize the iris image to account for size variations caused by camera distance, pupil
dilation, etc.

3. Extract data from the normalized iris by taking patches of the image in a regular pattern
and performing a special mathematical transform on them to build a hash table.

4. Perform the matching calculation by finding the sum of the differences in hashes.

4.1.1 Step One: Iris Image Extraction
The method of iris extraction involves extracting only the “zig-zag” collarette region of the
iris, immediately adjacent to the pupil.[Illustration 6]

The collarette contains the most distinct portion of the iris pattern, which makes a high degree
of matching accuracy possible using only this small portion of the overall iris.[R13]

(top)

(top)

(top)

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 7 of 13

The width of the collarette region does not vary with pupil dilation, and
it’s always centered exactly around the pupil; which the iris as a whole
often is not.[R6][R7]

While eyelids and eyelashes can still obscure portions of the collarette, the
most common source of noise occurs when the user’s eye is oriented in
such a way that the glint points from the eye tracker’s spotlights fall onto
the collarette region. To account for noise, a special mask is generated to
track which pixels should be ignored. However, the only noise currently
taken into account is the aforementioned glint from the eye tracker’s
spotlights. Other sources of noise (e.g., eyelids, eyelashes) are currently
not detected, and thus not filtered.

To further simplify image analysis, I used a free open source library, called
AForge,[B6] which provides utilities for computer vision and artificial
intelligence. To locate the pupil within the cutout image, I used AForge’s
threshold “blob” detection[B7] (i.e., the largest, darkest blob). Then, I
simply transform the blob into a best-fit circle. I also used blob detection
to define the glint points.

4.1.2 Step Two: Iris Image Normalization
Normalization helps to account for variations
caused by the distance between the eye tracker and
the user’s eyes – as well as variations in their pupil
dilation. The normalization process is also referred
to by Daugman as the “homogeneous rubber sheet
model,” because it stretches the iris image onto a
statically sized rectangular area,[Illustration 7] by
interpreting the isolated iris pixels according to
polar coordinates centered on the pupil.[R6][R7]

If a mask was generated for the iris image in
question (i.e., the glint points appeared in the
collarette region of the iris – see 4.1.1 Step One:
Iris Image Extraction), then the mask must be
translated along with the iris image itself. The mask is used later during the hash generation
and matching steps.

To perform the normalization, a radial “slice” of the original image is taken, starting from the
center of the pupil, for each column in the statically sized output image. Then each slice is
further subdivided into even smaller “tiny” slices. Each of those tiny slices is examined, and
the color values of the pixels that they touch are noted in the form of lists. Then the collection
of lists from those tiny slices have their lengths normalized to the height of the output image
via simple interpolation. Finally, the collections of tiny slices are averaged together, slice-
wise (as one might zip up a jacket). The resulting list of averaged values is written into the
corresponding column of the output image, and the algorithm proceeds to the next slice.

Illustration 7: Normalization of an extracted iris image.

(top)

Illustration 6: An eye
with the extracted
region and glint points
highlighted.

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 8 of 13

4.1.3 Step Three: Hash Generation
To summarize its function very generally: the algorithm takes the normalized image, and runs
Gabor wavelet transforms over little square pieces of it, in many overlapping locations of
various size, to extract what amounts to an iris “bar-code.” Any masked areas of the
normalized iris image are taken into account during this step. Unfortunately, this step is only
partially finished (see 5.2 Inherited Code, Hash Generation, and Angle Invariance).

4.1.4 Step Four: Hash Matching
The matching is done by calculating the Hamming distance between two iris hashes. To
calculate the Hamming distance, the two hashes are compared value-by-value.

The Hamming distance is calculated as the ratio of the number of mismatched values over the
number of significant (i.e., unmasked) values, and reported as a number between 0 and 1, as
described by Daugman.[R6][R7]

Finally, we decide if two hashes match based on whether the Hamming distance is below a
certain threshold value.

5. Results
The system is incomplete, so the software does
not implement the exact behavior described in
the proposal. Consequently, the demo and other
planned qualitative evaluations cannot currently
be performed. However, the software still
provides legitimate proof-of-concept, because it
establishes the feasibility of continuous iris
recognition using a remote eye tracker.

With our tiny database of four users, the software
consistently recognizes me and differentiates me
from the other users during live, and prerecorded,
test sessions when the Hamming distance
threshold is set to 0.25.[Illustration 8] However, the
software does not achieve angle invariance (see
5.2 Inherited Code, Hash Generation, and Angle
Invariance).

Obviously, the system needs more work. To that
end, I designed the software carefully to leave
behind a solid, well-documented foundation from which to continue development.

5.1 Deviations from Planned Software Behavior
Most of the deviations in planned software behavior are due to the developmental nature of the
program at this stage. A list of deviations is provided below.

Illustration 8: A screenshot of IrisGizmo in action.

(top)

(top)

(top)

(top)

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 9 of 13

1. Deviation: the software does not speed up matching (as described in the proposal) by
starting the search with the last matched user; nor does it stop the search when a match is
found.

◦ Reason: I need the full, exhaustive search (while debugging) in order to verify there
are no cases where more than one good match occurs.

2. Deviation: the software does not use a 5 second timeout period before changing its
readout.

◦ Reason: the software shows full developmental/debugging data in real-time.
3. Deviation: the software does not ever report the “No User” condition; instead, it simply

reports “Match” or “No Match” each time it performs a check.

◦ Reason: recognition of the “No User” condition requires the use of a timeout (see
item 2: above).

5.2 Inherited Code, Hash Generation, and Angle Invariance
I inherited three algorithms from a previous UAA student group. The three algorithms were: the
iris normalization, the Gabor hash computation, and the Hamming distance calculation. Their
work was done in the Java programming language, so I hand-ported their code to C#.

We expected their code to save a great deal of time and effort by providing some of the more
complex portions of the project’s software. Unfortunately, I eventually discovered that their code
was designed only to work with a very small set of samples, and therefore bore only a superficial
similarity to Daugman’s algorithms. Consequently, their code was unsuitable for our needs, and
had to be rewritten from scratch. I rewrote the algorithm to normalize iris images, and the
algorithms to perform Hamming distance calculations, but I did not have time for a detailed
implementation of Daugman's hash generation algorithm.

I decided to simplify matters by creating a “stub” (a temporary patch) hash generation method
using parts of the previous groups code, along with a touch of my own ingenuity. The stub code
does a primitive, pixel-by-pixel comparison of filtered, normalized iris images -- in contrast to
Daugman’s superior bar-code method. The advantage the of the stub is its tolerance for
unmasked noise, i.e., it prevents false matches (in our limited testing); the most notable
disadvantage is its lack of angle invariance. In other words, it is unable to make a match unless
the user’s eye is oriented in much the same way it was when the database sample (i.e., the user’s
authentic iris sample) was recorded. Thus, the software can go long periods of time without a
match, depending on the user’s posture at any given time.

As part of my stub algorithm, I attempt to account for iris rotation (due primarily to the user’s
head-tilt) by shifting the hashes column-wise (with wrap) in each direction, and recalculating the
Hamming distance; this process is repeated at incremental shifts to account for a configurable
maximum degree of rotation. The shifting increased the accuracy of the Hamming distance
calculation, and in some cases (observed in stored samples), even produced a match when none
was achieved without the shifting.

To achieve angle invariance, Daugman’s hash generation algorithm must be implemented
correctly. However, if Daugman’s hash generation method is to be used, then exact iris

(top)

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 10 of 13

extraction is critical.[R6] So, more noise must be detected and masked, and a more exact fit should
be determined for the pupillary and collarette boundaries (see 5.4 Future Work). Furthermore,
once Daugman’s Gabor hash generation algorithm is correctly implemented, the current circular
hash shifting will be unnecessary.

5.3 Revising an Idea from the Proposal
The original proposal mentioned, as a possible future direction of research, the potential to tune a
system to take advantage of the knowledge that a user is present or absent, by using that
information to decide when it would be appropriate to run resource-intensive tasks.

This is a sound idea in theory. However, this particular eye tracker offloads the work of
processing new images to the computer. Consequently, the eye tracker itself has a high software
overhead to begin with; and it hammers the CPU relentlessly when it cannot find a person’s eyes
(as it performs an exhaustive search).

On the other hand, the software could disable image processing and lock the screen when it
recognizes the absence of the user for a set time period. When the user returned they would have
to press a key, or otherwise notify the software. The software would then re-enable image
processing, and verify the user’s identity via iris recognition, before unlocking the screen.
However, this is obviously less than ideal, and may necessitate short delays while the image
processing is disabled and enabled.

So, given the specific eye tracker in question, the idea would likely not be a practical direction
for future efforts.

5.4 Future Work
1. Implement Daugman’s Gabor hash generation to achieve angle-invariant matching (see

5.2 Inherited Code, Hash Generation, and Angle Invariance). In order to accomplish this,
a more precise fit for the boundaries of the iris must be achieved. Additionally, unwanted
noise must be reliably detected and masked.

◦ The project’s software defines the pupillary boundary using a simple circle. However,
this is not sufficient to truly describe a pupil, since they are usually not perfectly
circular – even when the user is looking directly at the camera. Thus, slivers of
valuable iris information are often trimmed out, and unwanted noise is often included.
A superior algorithm would find a more exact fit for the pupillary boundary.

◦ For simplicity, I assume that the collarette is a static number of pixels of width (as
specified in the iris extractor's configuration file). It is true that the collarette’s width
does not change with the user’s pupil dilation; however, its width can vary from user
to user. Furthermore, as with the pupil, I assume the collarette's boundary is a perfect
circle; which may not be true, especially if the user's eye is tilted at a severe angle to
the camera. So, ideally one would somehow detect the exact collarette boundary.
One possible method would be to employ some form of edge detection to find the
collarette boundary – given that it begins at the pupillary boundary, and ends where
the density of ridges in the iris declines abruptly.

(top)

(top)

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 11 of 13

◦ Finding and masking various other types of noise within the iris image: eyelids,
eyelashes, smudges and fingerprints on glasses, etc.

◦ The eye tracker requires a certain degree of focus in order to detect and locate the
user’s eye. However, images need to meet a minimum focus criteria[R6] that may be
more restrictive than that which is needed for the eye tracker to function; more testing
is required to determine whether this is true. As of right now, no additional focus
evaluation is performed.

◦ Finally, the algorithm to generate the Gabor based hash needs to be properly
implemented as indicated by Daugman.[R6][R7][R11]

2. The algorithms that normalize the iris image, calculate the Hamming distance, and
construct and search the user database must each be optimized for speed and storage
overhead.

3. Once the software is actually finished, and the demonstration can be completed, the most
immediate next-step would be a formal user study, with more human subjects, to affirm
the accuracy and usability of the design.

4. To take the system beyond the proof-of-concept stage, future work could be done to
actually integrate the software into the Windows login, so that the system will
automatically take appropriate action when a different user (or no user) sits in front of it
(lock the terminal, switch to new user, etc).

5. It may be possible to integrate iris recognition with the normal functionality of the eye
tracker, to defeat any possibility of tricking the system by fixing a falsified iris image in
front of the camera.

6. Ultimately, the goal is the integration of passive, continuous iris recognition with other
authentication schemes to create robust multimodal systems.

6. Summary
The story of this project is largely one of success, because my efforts produced a viable proof-of-
concept system. Yet I failed to meet all of the requirements I set in my proposal. Most of the
deviations from planned software behavior are due to the developmental nature of the program at
this (unfinished) stage.

Dr. Daugman’s Gabor hash generation algorithms needs to be implemented correctly; which also
requires more exact extraction of iris pixels, and more robust noise detection. Additionally, some of
the other key algorithms in the system (e.g., iris normalization, Hamming distance calculation,
database searching) need optimization.

The framework I have built, and the challenges I have overcome, should lend drive and focus to
future research efforts in this area.

7. References and Supporting Literature
• [R1] Defense Science Board (DSB). “Report of the Defense Science Board Task Force on Defense

Biometrics.” Office of the Under Secretary of Defense For Acquisition, Technology, and Logistics

(top)

(top)

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 12 of 13

(Washington, D.C. 20301-3140, March 2007). <http://www.acq.osd.mil/dsb/reports/ADA465930.pdf>.

• [R2] NTSC Subcommittee on Biometrics. “Biometrics Overview.” Web (August 2006).
<http://www.biometrics.gov/Documents/BioOverview.pdf>.

• [R3] Chandra, A. and Calderon, T. “Challenges and Constraints to the Diffusion of Biometrics in
Information Systems.” Commun. ACM 48, 12 (Dec. 2005), 101-106.

• [R4] K. Niinuma and A. K. Jain. “Continuous User Authentication Using Temporal Information.” Prof
of SPIE, Biometric Technology for Human Identification VII (April 2010).
<http://biometrics.cse.msu.edu/Publications/Face/NiinumaJain_ContinuousAuth_SPIE10.pdf>.

• [R5] Kinnunen, T., Sedlak, F., and Bednarik, R. “Towards Task-Independent Person Authentication
Using Eye Movement Signals.” Proceedings of the 2010 Symposium on Eye-Tracking Research &
Applications (Austin, Texas, March 22 - 24, 2010). ETRA '10. ACM, New York, NY, 187-190.

• [R6] Daugman, John. “How Iris Recognition Works.” IEEE Transactions on Circuits and Systems for
Video Technology 14(1) (January 2004):21-30. <http://www.cl.cam.ac.uk/users/jgd1000/irisrecog.pdf>.

• [R7] Daugman, John. “Probing the Uniqueness and Randomness of IrisCodes: Results from 200 Billion
Iris Pair Comparisons.” Technical Report UCAM-CL-TR-635 (University of Cambridge Computer
Laboratory, June 2005). <http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-635.pdf>.

• [R8] Monrose, F. and Rubin, A. “Authentication Via Keystroke Dynamics.” Proceedings of the 4th
ACM Conference on Computer and Communications Security (Zurich, Switzerland, April 01 - 04,
1997). CCS '97. ACM, New York, NY, 48-56.

• [R9] Chudá, D. and Ďurfina, M. “Multifactor Authentication Based on Keystroke Dynamics.”
Proceedings of the international Conference on Computer Systems and Technologies and Workshop For
PhD Students in Computing (Ruse, Bulgaria, June 18 - 19, 2009). B. Rachev and A. Smrikarov, Eds.
CompSysTech '09, vol. 433. ACM, New York, NY, 1-6.

• [R10] EyeTech Digital Systems. “EyeTech TM3 Details.” Web. Accessed 09 Dec 2010.
<http://www.eyetechds.com/research/tm3-qc>.

• [R11] Daugman, John. “Importance of Being Random, The - Statistical Principles of Iris Recognition.”
Technical Report CB3 0FD, UK (University of Cambridge Computer Laboratory, Dec 2001).
<http://www.cl.cam.ac.uk/users/jgd1000/patrec.pdf>

• [R12] EyeTech Digital Systems. “TM3 Hardware Installation Manual.” EyeTech Digital Systems
Website (October 2007).
<http://www.eyetechds.com/assistivetech/support/downloads/TM3HardwareInstallManual.pdf>.

• [R13] XiaoFu He and PengFei Shi. “An Efficient Iris Segmentation Method for Recognition.” Pattern
Recognition and Image Analysis: Third International Conference on Advances in Pattern Recognition,
ICAPR 2005 Bath, UK, August, 2005 Proceedings, Part II. LNCS3687. ISBN-10 3-540-28833-3
Springer Berlin Heidelberg New York

7.1 Other Resources
• [B1] Dr. John Daugman's Homepage. Web (Accessed Oct 19, 2011).

<http://www.cl.cam.ac.uk/~jgd1000/>.

• [B2] Dr. Kenrick Mock's Homepage. Web (Accessed Oct 24, 2011).
<http://www.math.uaa.alaska.edu/~afkjm/>.

(top)

http://www.math.uaa.alaska.edu/~afkjm/
http://www.cl.cam.ac.uk/~jgd1000/
http://www.eyetechds.com/assistivetech/support/downloads/TM3HardwareInstallManual.pdf
http://www.cl.cam.ac.uk/users/jgd1000/patrec.pdf
http://www.eyetechds.com/research/tm3-qc
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-635.pdf
http://www.cl.cam.ac.uk/users/jgd1000/irisrecog.pdf
http://biometrics.cse.msu.edu/Publications/Face/NiinumaJain_ContinuousAuth_SPIE10.pdf
http://www.biometrics.gov/Documents/BioOverview.pdf
http://www.acq.osd.mil/dsb/reports/ADA465930.pdf

Iris Recognition for Continuous Biometric User Authentication -J. Weaver Page 13 of 13

• [B3] Microsoft Corporation. “Microsoft .NET Framework.” Web (Accessed Apr 28, 2011).
<http://www.microsoft.com/net/>.

• [B4] Justin Weaver, QuickLinkAPI4NET. Software source code: an API wrapper for Windows .NET.
Web (Accessed Oct 18, 2011). <http://quicklinkapi4net.googlecode.com>.

• [B5] Justin Weaver. "Iris Recognition for Continuous Biometric User Authentication" (i.e., the
original proposal for this research). Web (Accessed Apr 28, 2011).
<http://www.uaa.alaska.edu/ours/success/competitive-
grants/research/upload/Justin_Weaver.pdf>.

• [B6] AForge.NET. “AForge: An open source C# framework designed for developers and researchers
in the fields of Computer Vision and Artificial Intelligence.” Web (Accessed Apr 27, 2011).
<http://www.aforgenet.com/framework/>.

• [B7] AForge.NET. AForge: Blob Processing.” Web (Accessed Apr 27, 2011).
<http://www.aforgenet.com/framework/features/blobs_processing.html>.

http://www.aforgenet.com/framework/features/blobs_processing.html
http://www.aforgenet.com/framework/
http://www.uaa.alaska.edu/ours/success/competitive-grants/research/upload/Justin_Weaver.pdf
http://www.uaa.alaska.edu/ours/success/competitive-grants/research/upload/Justin_Weaver.pdf
http://quicklinkapi4net.googlecode.com/
http://www.microsoft.com/net/

	Abstract
	1. Introduction
	2. Overview
	2.1 Remote Eye Trackers for Iris Recognition

	3. Requirements
	3.1 Base Requirements
	3.2 Software Requirements
	3.2.1 Software Behavior Specifications

	3.3 Other Requirements
	3.3.1 Demonstration Requirements
	3.3.1.1 Demonstration Steps

	4. Methodology
	4.1 Iris Matching Steps
	4.1.1 Step One: Iris Image Extraction
	4.1.2 Step Two: Iris Image Normalization
	4.1.3 Step Three: Hash Generation
	4.1.4 Step Four: Hash Matching

	5. Results
	5.1 Deviations from Planned Software Behavior
	5.2 Inherited Code, Hash Generation, and Angle Invariance
	5.3 Revising an Idea from the Proposal
	5.4 Future Work

	6. Summary
	7. References and Supporting Literature
	7.1 Other Resources

